POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Advanced SPM Laboratory [S2FT2>ZLMP]

Course			
Field of study		Year/Semester	
Technical Physics		1/1	
Area of study (specialization)		Profile of study general academi	c
Level of study second-cycle		Course offered ir Polish	1
Form of study full-time		Requirements compulsory	
Number of hours			
Lecture	Laboratory classe	es	Other
0	15		0
Tutorials	Projects/seminars	S	
0	0		
Number of credit points 1,00			
Coordinators		Lecturers	
dr inż. Marek Weiss marek.weiss@put.poznan.pl			
dr inż. Marek Nowicki marek.nowicki@put.poznan.pl			

Prerequisites

Basic knowledge of the design and operation of probing microscopes (STM, AFM). Knowledge of materials science and strength of materials and electricity and magnetism.

Course objective

1. Familiarizing students with advanced SPM measurement techniques. 2. Familiarizing students with the nanoindentation technique and the material parameters that can be determined in it. 3. Shaping teamwork skills in students

Course-related learning outcomes

Knowledge:

1. After completing the course, the student understands the principles of operation and physical phenomena used in the individual modes of operation of scanning probe microscopes 2. After completing the course, the student understands the principles of operation and physical

phenomena used in determining the mechanical parameters of materials using the nanoindentation method

Skills:

1. After completing the course, the student is able to select the appropriate measurement mode of the SPM, matching it to the characteristics of the materials they want to examine

2. A student who has passed the course is able to independently operate the SPM in the LFM, FM, MFM, AFM and nanoindenter modes

Social competences:

1. A student who has passed the course is able to plan and carry out measurements using a SPM and a nanoindenter independently and in a team.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

In terms of the methods used to verify the achieved learning outcomes, the following grading thresholds are applied:

50.1-60% - 3.0 60.1-70% - 3.5; 70.1-80% - 4.0; 80.1-90% - 4.5; from 90.1% - 5.0 The assessment re

The assessment results from the preparation of a laboratory measurement protocol and/or oral response.

Programme content

Participants will learn in a practical way the advanced operating modes of SPM (LFM, FM, MFM, AFM) as well as force spectroscopy and the nanoindentation technique.

Course topics

- 1. Measurement in MFM (magnetic force microscopy) mode
- 2. Measurement in FM (force modulation) mode
- 3. Measurement in CAFM (conductive AFM) mode
- 4. AFM force spectroscopy measurements
- 5. Nanoindenter measurement of various materials (metals, semiconductors, polymers)

Teaching methods

Laboratory exercises: practical exercises, conducting experiments, discussion, team work.

Bibliography

Basic:

Nan Yao, Zhong Lin Wang, Handbook of Microscopy for Nanotechnology, Springer 2005
Ernst Meyer, Roland Bennewitz, Hans J. Hug, Scanning Probe Microscopy: The Lab on a Tip Springer 2021

Additional:

Scientific publications on techniques that are the subject of science

Breakdown of average student's workload

	Hours	ECTS
Total workload	30	1,00
Classes requiring direct contact with the teacher	15	0,50
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)	15	0,50